Module Name : PhD Environmental Technology-E Exam Date : 20-Sep-2020 Batch : 12:30-14:30

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negati Mark
bject	ive Question			
	1	How many grams of KMnO ₄ (M. W. = 158) per litre of solution are needed to prepare 0.01N solution, KMnO ₄ which is to be used as oxidant in alkaline medium?	4.0	1.00
		A2 0.316 g		
		A3 3.16 g		
		A4 1.58/2 g		
bject	ive Question			
	2	If p^{o} and p are the vapour pressures of the solvent and solution respectively and n_{1} and n_{2} are the mole fractions of the solvent and solute respectively, then?	4.0	1.00
		$\frac{A1}{p} = p^{o} n_{1}$		
		$\frac{A2}{a} p = p^{o} n_2$		
		$\begin{array}{c} A3\\ \vdots\\ p^{o} = pn_{2} \end{array}$		
		$\frac{A4}{p} = p^{o}(n_1 / n_2)$		
oject	ive Question			
	3	If a compound has a negative heat of solution, at high temperature it dissolves	4.0	1.00
		A1 More rapidly and is more soluble		
		A2 More rapidly and is less soluble		
		A3 Less rapidly and is less soluble		
		A4 Less rapidly and is more soluble		
	ive Question			
oject				1.00

	A1 0.1 N and basic :	
	^{A2} 0.5 N and basic	
	A3 0.1 N and acidic	
	A4 0.05 N and acidic	

Objec	tive Question			
5	5	In the case of osmosis, solvent molecules move from?	4.0	1.00
		A1 Higher vapour pressure to lower vapour pressure		
		A2 : Higher concentration to lower concentration		
		A3 Lower vapour pressure to higher vapour pressure		
		A4 : One region to another		
Objec	tive Question			
<u>,</u>	6	A liquid can exist only?	4.0	1.00
		A1 Between triple point and critical temperature		
		A2 : At any temperature above the m.p.		
		A3 : Between melting and critical temperature		
		A4 Between boiling point and melting temperature		
Objec	tive Question			

7	The temperature at which the vapour pressure is equal to the external pressure is called?	4.0	1.00
	A1 Critical temperature		
	A2 Boiling point		
	A3 Freezing point		
	A4 : Saturation point		
ective Ques	tion		

8	8	Smoke is an example of?	4.0	1.00
		A1 : Gas dispersed in liquid		
		A2 Gas dispersed in solid		
		A3 Solid dispersed in gas		
		A4 Solid dispersed in solid		
Objec	tive Question			
9	9	One mole of ethyl alcohol was treated with one mole of acetic acid at 25°C. Two-third of the acid changes into acid at equilibrium. The equilibrium constant for the reaction will be?	4.0	1.00
		A1 1 :		
		A2 2 :		
		A3 3		
		A4 4 :		
Objec	tive Question			
10	10	In an exothermic reaction, high yield is produced at?	4.0	1.00
		A1 High temperature		
		A2 : Low temperature		
		A3 Low concentration		
		A4 None of these		
Objec	tive Question			
11	11	Which of the following reaction is not affected by pressure?	4.0	1.00
		$ \underset{:}{\overset{A1}{\overset{PCI_{3}}{\leftarrow}}} \operatorname{PCI_{3}}{\overset{+}{\leftarrow}} \operatorname{PCI_{5}} $		
		$\begin{array}{c} A2\\ \vdots\\ N_2 + 3H_2 \leftrightarrows 2NH_3 \end{array}$		
		$ \overset{A3}{:} N_2 + O_2 \stackrel{\leftarrow}{=} 2NO $		
		A4 $2SO_2 + O_2 \stackrel{\leftarrow}{\rightarrow} 2SO_3$		

		∥:		
	tive Question			
2	12	In a reaction 2X + Y \rightarrow M + N the concentration of Y is triple. Now the rate constant of the reaction will?	4.0	1.00
		A1 : Increase three times		
		A2 Decrease three times		
		A3 Increase 6 times		
		A4 : Increase 9 times		
biec	tive Question			
3	13	In the reaction $A \rightarrow B$, if the concentration of A is increased four times the rate of reaction is doubled. The order of the reaction is?	4.0	1.00
		A1 1 :		
		A2 0		
		A3 1/2		
		A4 2		
bjec 4	tive Question		4.0	1.00
4	14	The enzyme catalysed reaction is faster than metal catalysed reaction because its activation energy is?	4.0	1.00
		A1 Greater than :		
		A2 Lower than		
		A3 Same as that of metal catalysed reaction		
		A4 None of these		
hiaa	tive Question			
5	15	The rate of reaction, A+2B \rightarrow Products is given by $-\frac{d[A]}{dt} = k$ [A] [B] ² . If B is present in large excess, the order is?	4.0	1.00
		A1 0		
		A2 1		

		A3 2 :		
		A4 3 :		
bjec	tive Question			
6	16	In a reversible reaction, a catalyst?	4.0	1.00
		A1 Increases the rate of forward reaction :		
		A2 Increases the rate of backward reaction		
		A3 Increases the rate of forward and backward reaction equally :		
		A4 None of these		
bjec	tive Question			
7	17	As a general rule, adding a catalyst to a reacting system	4.0	1.00
		A1 Increase the yield of the product		
		A2 Decreases the yield of the product		
		A3 Does not affect the yield of product		
		A4 Increases and decreases to yield irregularly		
bjec	tive Question			
8	18	Which of the following is intensive property?	4.0	1.00
		Al Temperature		
		A2 Molarity		
		A3 Density		
		A4 All of these		

 19
 19
 When a gas is subjected to adiabatic expansion, it gets cooled due to?

 A1
 Fall in temperature

4.0 1.00

		A2 Loss of K.E		
		A3 Decrease in velocity		
		A4 Energy used in doing work		
Objec	tive Question			
20	20	When ice melts into water, entropy?	4.0	1.00
		Al Becomes zero		
		A2 Decreases		
		A3 Increases		
		A4 Remains the same		
Objec	ctive Question			
21	21	A process in which no heat enters or leaves the system is called	4.0	1.00
		Al Isothermal		
		A2 Isobaric		
		A3 Adiabatic		
		A4 : Isochoric		
Objec	tive Question			
22	22	Among ice, water and vapour, which will have maximum entropy?	4.0	1.00
		Al Vapour		
		A2 Ice		
		A3 Water		
		A4 None of these		
Obiec	tive Question			
23	23	Which of the following is not correct when zinc piece is added to copper sulphate solution?	4.0	1.00
		A1 Copper is precipitated and solution becomes colourless		

	A2 Zinc is more electropositive than copper :		
	A3 : More electropositive metal displace less electropositive metals from their salt solutions		
	A4 Copper displaces zinc from CuSO ₄ solution :		
Dbjective Question			
24 24	A solution of pH 9.0 is one thousand times as basic as a solution of pH?	4.0	1.00
	A1 6		
	A2 7		
	A3 4 :		
	A4 10		
Dbjective Question			
25 25	Precipitation takes place when the product of concentrations of ions?	4.0	1.00
	A1 Exceeds their solubility product		
	A2 Is less than their solubility product		
	A3 Equals their solubility product		
	A4 None of these		
Objective Question			
26 26	Which of the following is a derived unit?	4.0	1.00
	Al Mass :		
	A2 Velocity :		
	A3 Length		
	A4 Time		
Dijective Question			

A2 metre : hr	
$\frac{A3}{r} \frac{metre}{hr^2}$	
$\frac{A4}{1} \frac{\text{metre}^2}{\text{hr}}$	

Object	live Question			
28	28	When a 1 Newton force acts on a 1 kg body that is able to move freely, the body receives:	4.0	1.00
		A1 A speed of 1 m/sec		
		$^{A2}_{:}$ An acceleration of 1 m/sec ²		
		A3 : An acceleration of 980 cm/sec ²		
		$\stackrel{A4}{:}$ An acceleration of 1 cm/sec ²		
	tive Question			
29	29	A child weighing 25 kg slides down a rope hanging from the branch of a tree. If the force of friction against him is 200N, what is the child's acceleration? [Take $g = 10 \text{ m/s}^2$]	4.0	1.00
		$\frac{A1}{22.5}$ m/s ²		
		$\stackrel{A2}{:} 8 \text{ m/s}^2$		
		$\stackrel{A3}{:}$ 5 m/s ²		
		$\frac{A4}{2}$ 2 m/s ²		
Object	tive Question			
30	30	Choose the wrong statement:	4.0	1.00
		A1 weight of a body is greater at the poles and less at equator		
		A2 weight of the body is greater in planes and less on hill tops		
		$\stackrel{A3}{:}$ weight of a body on the moon is less than that on the earth is more on sun		
		A4 none of these		
				II.

	tive Question			
31	31	Soap helps in better cleaning of clothes because:	4.0	1.00
		A1 : It reduces the surface tension of solution		
		A2 : It gives strength to solution		
		A3 It absorbs the dirt		
		A4 Chemical of soaps change		
Dbject	tive Question			
32	32	The viscosity of falling rain drop attains limited value because of:	4.0	1.00
		A1 upthrust of air		
		A2 viscosity force exerted by air		
		A3 surface tension effects		
		A4 : air currents in atmosphere		
Dbiect	tive Question			
3	33	According to the kinetic theory of gases, which of the following statements is wrong?	4.0	1.00
		A1 All molecules of a gas are identical		
		A2 Collisions between the molecules of a gas and that of the molecules with the walls of the containers are perfectly elastic		
		A3 The molecules do not exert appreciable force on one another except during collision		
		A4 The pressure exerted by a gas is due to the collisions between the molecules of the gas		
Dbject	tive Question			
4	34	The thermometer suitable to measure 4000 °C is:	4.0	1.00
		A1 Mercury thermometer		
		A2 Total radiation pyrometer		
		A3 Gas thermometer		

Obje	Objective Question									
35	35	Water evaporates under the atmospheric pressure. If now the same water is placed under vacuum, then the rate of evaporation:	4.0	1.00						
		A1 Will decrease								
		A2 : Will remain unchanged								
		A3 Will increase								
		A4 None of these								

Objective Question

	1							
36	36	When a sealed glass vessel filled with water at 4°C is cooled, it breaks because:	4.0	1.00				
		A1 of anomalous expansion :						
		A2 of contraction of the glass						
		A3 both						
		A4 none of these						

ctiv Ohi

•	live Question			
37	37	The complete conversion of a given quantity of heat into useful mechanical work occurs:	4.0	1.00
		A1 often		
		A2 seldom		
		A3 never		
		A4 depends on the device		
Objec	tive Question			
38	38	While measuring the thermal conductivity of a liquid, we keep the upper part hot and lower cool so that:	4.0	1.00
		A1 convection may be stopped		
		A2 radiation may be stopped		

A4 it is easier and more convenient to do so

tive Question			
39	A cylinder fixed rigidly at one end has a tangential force applied to its other end. The shape and volume of the cylinder remain unaltered. The strain produced in the cylinder is:	4.0	1.00
	A1 : Longitudinal		
	A2 Volumetric		
	A3 Shear		
	A4 : Zero		
tive Question			
40	In an ordinary heater if the length of the coil is halved, then a given quantity of water will boil in:	4.0	1.00
		A ¹ Longitudinal A ² Volumetric A ³ Shear A ⁴ Zero inve Question	A1 Longitudinal A2 Volumetric A3 Shear A4 Zero ive Question

	A1 less time		
	A2 more time		
	A3 same time		
	A4 : cannot be compared because specific resistance of material of wire is not given		

	41	If temperature of a substance is decreased, its resistance decreases and finally becomes zero. Such substance is called:	4.0	1.00
		A1 conductor :		
		A2 : super-conductor		
		A3 semi-conductor		
		A4 : insulator		
oject	ive Question			
	42	A wire has a resistance 10 $\Omega.$ It is stretched by one-tenth of its original length. Then its resistance will be:	4.0	1.00
		A1 : 10 Ω		

	A4 9:4		
	A3 : 1:1		
	A2 4:9 :		
	A1 8:27		
5 45	Water is flowing through a tube of non-uniform cross-section. If the radius of the tube at the entrance and exit is in the ratio 3 : 2 then the ratio of velocity of liquid entering and leaving the tube is:	4.0	1.00
bjective Question			
	$\begin{array}{c} A4\\ \vdots\\ R=2 \eta r v/d \end{array}$		
	$\frac{A3}{2} R = rdv/\eta^2$		
	$\frac{A2}{c} R = rdv/\eta$		
	$\frac{A1}{c}$ R = 2rdv/ η		
4 44	A fluid of density 'r' and viscosity η is flowing through a pipe of diameter 'd' with a velocity 'v'. Reynold number R is:	4.0	1.00
Dijective Question			
	A4 one litre of gas		
	A3 one gram mole of gas		
	A2 i one gram of gas		
	A1 any amount of gas		
Dejective Question	In the equation PV=RT, V stands for the volume of:	4.0	1.00
	A4 11Ω		
	A3 : Ωε		
	$\stackrel{A2}{:}$ 12.1 Ω		

46	46	According to the kinetic theory of gases, which of the following statements is wrong?	4.0	1.00
		All molecules of a gas are identical		
		$\stackrel{A2}{:}$ Collisions between the molecules of a gas and that of the molecules with the walls of the containers are perfectly elastic		
		A3 The molecules do not exert appreciable force on one another except during collision :		
		$\stackrel{A4}{:}$ The pressure exerted by a gas is due to the collisions between the molecules of the gas		
Object	tive Question			
47	47	There is a hole of area A at the bottom of a cylindrical vessel. Water is filled upto a height h and water flows out in t sec. If water is filled to a height 4h, it will flow out in time:	4.0	1.00
		Al t		
		$\frac{A2}{2}$ 4t		
		$\overset{A3}{:}$ 2t		
		A4 : t/4		
Object	tive Question			
48	48	If you float on your back on water, your weight is:	4.0	1.00
		Al Zero		
		A2 Equal to your normal weight		
		A3 Half your normal weight		
		A4 Greater than the weight of water you displace		
Object	tive Question			
49	49	Streamline flow is more likely for liquids with:	4.0	1.00
		A1 : High density and low viscosity		
		A2 : Low density and high viscosity		
		A3 : High density and high viscosity		
		A4 : Low density and low viscosity		

Dbject	ive Question			
	50	With increase in temperature, the viscosity of:	4.0	1.00
		A1 gases decreases and liquid increases		
		A2 gases increases and liquid decreases		
		A3 both gases and liquid increases		
		A4 both gases and liquid decreases		
bject	ive Question			
	51	The value of $\tan (B - C) + \tan (C - A) + \tan (A - B)$ is	4.0	1.00
		A1 0 :		
		A2 1		
		$\stackrel{A3}{:} \tan A \tan B \tan C$		
		$\frac{A4}{:} \tan(B - C)\tan(C - A)\tan(A - B)$		
Object	ive Question			
	52	50 th percentile of a distribution coincides with its	4.0	1.00
		A1 mean		
		A2 median		
		A3 mode		
		A4 quartile		
biect	ive Question			
	53	The maximum possible area that can be enclosed by a wire of length 20 cm. By bending it into the form of a sector in square cms. is	4.0	1.00
		A1 10 :		
		A2 25		
		^{A3} ₃₀		

		A4 None of these		
Ohier	ective Question			
54	54	If $u = (x^{1/4} + y^{1/4})/(x^{1/6} + y^{1/6})$ and $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = ku$, then $k =$	4.0	1.00
		A1 1/4 :		
		A2 1/12 :		
		A3 1/24 :		
		A4 1/6		
Ohier	ective Question			
55	55	The straight lines $x+y=0, 3x+y-4=0, x+3y-4=0$ form a triangle which is	4.0	1.00
		A1 Isosceles		
		A2 Equilateral		
		A3 Right angled		
		A4 None of these		
~1 '				
Ођес 56	ctive Question	A coin tossed three times. The probability of obtaining at least two heads is	4.0	1.00
		A control to see the probability of obtaining at least two heads is $ \frac{A1}{3} = \frac{3}{8} $		
		8		
		$\begin{array}{c} A2 \frac{7}{8} \\ \vdots \frac{7}{8} \end{array}$		
		$\begin{array}{c} A3 \\ \vdots \\ 8 \end{array}$		
		$\begin{array}{c} A4 & \underline{1} \\ \vdots & \underline{2} \end{array}$		
Objec 57	57	The value of $y''(1)$, when $x^3 - 2x^2 y^2 + 5x + y - 5 = 0$ and $y(1) = 1$, is given by	4.0	1.00
		A1 22/27		

	A2 -182/23 : A3 8 : 8		
	A4 : -238/27		
Objective Questi	on		
58 58	A matrix is	4.0	1.00
	A1 : A collection of real numbers		
	A2 A collection of real or complex numbers		
	A3 : An array of real numbers		
	A4 : An array of real or complex numbers		
Objective Questi	on		
59 59	The period of sin x cos x is	4.0	1.00
	A1 π :		
	A2 : 2π		

Obje	ctive Question			
60	60	If $\boldsymbol{\alpha}$ is a vector and \boldsymbol{x} is a non-zero scalar, then	4.0	1.00
		A1 x α is a vector in the direction of α		
		$\frac{A2}{2}$ x α is a vector collinear to α		
		$\frac{A3}{2}$ xa and a have independent direction		
		A4 None of these		
	ctive Question			
61	61		4.0	1.00

A3 : π/2

A4 none of these

1	1	Л	I	п р
		A1 : -3, 2, 7		
		A2 3, -2, 5		
		A3 3, 2, 1		
		A4 None of these		
21. : cotix	ve Question			
		If $y = \sin^n x \cos nx$, then dy/dx	4.0	1.00
		If $y = \sin^{n}x \cos nx$, then $\frac{ay}{ax}$		
		$\stackrel{A1}{:} n \sin^{n-1} x \cos(n+1) x$		
		$ \sum_{n=1}^{A2} n \sin^{n-1} x \sin(n+1) x $		
		$\stackrel{A3}{:} n \sin^{n-1} x \cos(n-1) x$		
		$\stackrel{A4}{:} n \sin^{n-1} x \cos n x$		
Ohiectiv	ve Question			
		If tangent to the curve $x = at^2$, $y = 2at$ is perpendicular to x-axis then its point of contact is	4.0	1.00
		$\frac{A2}{2}(0,a)$		
		$\stackrel{A3}{:}(a,0)$		
		A4 (0, 0)		
Objectiv	ve Question			
	64	The tangent to the curve $y - e^{-x}$ at the point (0, 1) meets the x-axis at	4.0	1.00
		$\frac{A1}{a}(0,a)$		
		A2 (2, 0)		
		A3 : (-1/2, 0)		

ve Question			
65	The differential coefficient of $f(\log x)$ w.r.t. x, where $f(x) = \log x$ is	4.0	1.00
	$A1 x/\log x$		
	A2		
	$\frac{\log x}{x}$		
	$A_{x}^{A_{x}} (x \log x)^{-1}$		
	A4 .		
	$(\log x)^{-1}$		
		1.0	1.00
66	The area enclosed by the curve $y^2 = 4x$ and the line $y = x$ is	4.0	1.00
	$\stackrel{\text{A1}}{:}$ 2/3		
	A2 4/3		
	: ""		
	$\begin{vmatrix} AS \\ \vdots \end{vmatrix}$		
	A4 8/3		
···· Overtier			
67	The distance between the lines $3x+4y = 9$ and $6x+8y = 15$ is	4.0	1.00
	The distance between the lines 5x+1y - 9, and 6x+0y - 15 is		
	A1 3/2		
	$\frac{A2}{2} \frac{3}{10}$		
	A3 6		
	$\frac{1}{2}$ $\frac{1}{2}$		
ve Question			
68	Solution of the differential equation $dy + 3x + 2y - 5 = 0$	4.0	1.00
	Solution of the differential equation $\frac{d}{dx} + \frac{d}{2x+3y-5} = 0$ is		
	$A1 = 3x^2 + 3y^2 + 4xy - 10x + 10y = c$		
	A2 2 2		
	$ \sum_{x=1}^{A2} x^{2} + 4xy - y^{2} - 4x + 6y = c $		
	$A2 : x^{2}+4xy-y^{2}-4x+6y = c$ $A3 : (x+2y)^{2}+3y = c$		
	ve Question	$A_{2}^{2} \log x^{i}x$ $A_{3}^{3} (x \log x)^{-1}$ $A_{4}^{4} (\log x)^{-1}$ Y^{2} Question 66 The area enclosed by the curve $y^{2} = 4x$ and the line $y = x$ is $A_{1}^{2} 2/3$ $A_{2}^{2} 4/3$ $A_{2}^{3} 4/3$ $A_{2}^{3} 4/3$ $A_{2}^{3} 4/3$ $A_{2}^{3} 4/3$ $A_{2}^{3} 4/3$ $A_{2}^{3} 4/3$ $A_{3}^{3} 1/2$ $A_{4}^{4} 8/3$ ve Question δ^{7} The distance between the lines $3x+4y = 9$, and $6x+8y = 15$ is $A_{1}^{1} 3/2$ $A_{2}^{1} 3/10$ $A_{3}^{1} 10/3$ ve Question	$A_{2}^{2} \log x'x$ $A_{3}^{3} (x \log x)^{-1}$ $A_{4}^{0} (\log x)^{-1}$ $A_{4}^{0} (\log x)^{-1}$ $A_{4}^{0} (\log x)^{-1}$ $A_{4}^{0} (\log x)^{-1}$ $Ve Question$ $A_{4}^{2} 43$ $A_{4}^{2} 43$ $A_{2}^{2} 43$ $A_{4}^{2} 83$ $A_{4}^{0} 83$ $Ve Question$ $A_{4}^{0} 83$ $A_{4}^{0} 83$ $Ve Question$ $A_{4}^{1} 83$ $A_{4}^{0} 83$ $Ve Question$ $A_{4}^{1} 103$ $A_{4}^{1} 103$ $Ve Question$ $A_{4}^{1} 103$ $A_{4}^{1} 103$

A4	$3x^2+y^2+xy-10x-10y = c$
	$3x^2+v^2+xv-10x-10v = c$
•	

$ \begin{array}{c} A4 \\ \vdots \\ 3x^2 + y^2 + xy - 10x - 10y = c \end{array} $		
ion		
$\int x^2 e^{2x} dx =$	4.0	1.00
$ \stackrel{A1}{:} e^{2x} [2x^2 - 2x + 1] + c $		
$ \stackrel{A2}{:} {}_{1/2} {}_{e^{2x}} [2x^2 - 2x + 1] + c $		
$ \stackrel{A3}{:} {}^{1/4} e^{2x} [2x^2 + 2x - 1] + c $		
A4 None of these		
st	stion $\int x^2 e^{2x} dx =$ $A_1^{-1} e^{2x} [2x^2 - 2x + 1] + c$ $A_2^{-2x} [2x^2 - 2x + 1] + c$ $A_3^{-2x} [2x^2 - 2x + 1] + c$ $A_3^{-3} 1/4 e^{2x} [2x^2 + 2x - 1] + c$ $A_4^{-3x} = cd$	stion $\int x^2 e^{2x} dx = $ $A_1 e^{2x} [2x^2 - 2x + 1] + c$ $A_2 1/2 e^{2x} [2x^2 - 2x + 1] + c$ $A_3 1/4 e^{2x} [2x^2 + 2x - 1] + c$ $A_4 x_1 = 64$

0	70	The diagram used to estimate mode graphically is	4.0	1.00
		Al Histogram :		
		A2 Frequency Curve		
		A3 Ogine		
		A4 Bar diagram		
bject	tive Question			
1	71	A tree is broken by wind, its upper part touches the ground at a point 10 m from the foot of the tree and makes an angle of 45° with the ground. The entire length of the tree is	4.0	1.00
		A1 15 metres		
		A2 20 metres		
		A3 10 (1+√2) metres		
		A4 10 (1+\/3/2) metres.		
Dbject	tive Question			
2	72	Given the sets A = {1, 2, 3}, B = {3, 4}, C = {4, 5, 6}, then A∪(B∩C) is	4.0	1.00
		A1 {3}		

		A2 {1, 2, 3, 4} :		
		$\stackrel{A3}{:} \{1, 2, 5, 6\}$		
		$\stackrel{A4}{:} \{1, 2, 3, 4, 5, 6\}$		
Object	ive Question			
73	73	The number of ways, in which a student can choose 4 courses out of 9 courses, when 2 courses are compulsory, is	4.0	1.00

	A1 36	
	A2 35	
	A3 126	
	A4 : 6	
Objective Question		

ooje	cuve Question			
74	74	Let the vectors $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $\mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j} + \mathbf{c}\mathbf{k}$ be perpendicular. Then	4.0	1.00
		A1 $a = 2, b = 3, c = -4$		
		A2 $a = 4, b = 4, c = 5$		
		A3 $a = 4, b = 4, c = -5$		
		$A4_{c} a = 2, b = 4, c = -5$		

75	75	Let A be a square matrix. Then A+A ^T will be	4.0	1.00
		A1 the identity matrix		
		A2 diagonal matrix		
		A3 symmetric matrix		
		A4 : skew-symmetric		
Objec	tive Question			
76	76	Which of the following has the highest global warming potential:	4.0	1.00

	:		
	^{A2} _{CO2}		
	A3 CH ₄		
	^{A4} Cl ₂		

Objective Question 77 77 Hardness in water is due to: 4.0 1.00 A^1 monovalent anions A^2 monovalent cations A^2 i with anions A^3 divalent anions A^4 divalent cations A^4 divalent cations A^4 divalent cations A^4 divalent cations

tive Question			
78	When the temperature of a water-body increases, the dissolved oxygen	4.0	1.00
	A1 increases		
	A2 decreases		
	A3 remains the same		
	A4 none of these		
tive Question			
79	Nitrification is a process in which	4.0	1.00
	A1 Ammonia is converted to Nitrate		
	A2 : Ammonia is converted into nitrogen		
	A3 nitrogen is converted into Ammonia		
	A4 Nitrate is converted into Ammonia		
	78 tive Question	$\frac{A^{1}}{a} \text{ increases}$ $\frac{A^{2}}{a} \text{ decreases}$ $\frac{A^{3}}{a} \text{ remains the same}$ $\frac{A^{4}}{a} \text{ none of these}$ $\frac{A^{3}}{a} none of the normalized or equation (A) and (A) and$	78 When the temperature of a water-body increases, the dissolved oxygen

	Among the following devices which one is the most suitable for controlling		
	emission of particulates having diameter less than 1 µ.?		
	Al Cyclone		
	A2 Venturi Scrubber		
	: venturi Scrubber		
	A3 Bag filter		
	A4		
	A4 Electrostatic precipitator :		
Objective Question			1
81 81	The substance responsible for the 'Minamata' disaster was	4.0	1.00
	A1 Copper		
	A2 Chromium		
	A3 Mercury		
	A4		
	A4 Zinc		
Objective Question			
82 82	The main atmosphere layer near the surface of earth is	4.0	1.00
	A1 Troposphere		
	A2 Mesosphere		
	A3 Ionosphere		
	A4 Stratosphere		
	: :		
Objective Question 83 83		4.0	1.00
0.5 0.5	Reuse is	4.0	1.00
	A1		
	Al recycling of resources for gaining energy and materials		
	A2 using a productagain and again in its original form		
	A3 extracting resources from waste for secondary purposes.		
	A4 Converting waste materials into raw material for manufacturing		
		I	

		:		
	tive Question			
4	84	The absence of which of the following will make life impossible for fish in a water body:	4.0	1.00
		A1 : Hardness		
		i nardness		
		A2		
		A2 Acidity		
		A3 Alkalinity		
		A3 Alkalinity		
		A4 E Dissolved oxygen		
)bjec 5	etive Question		4.0	1.00
5	0.5	Effluent from tanneries contains which toxic heavy metal?	4.0	1.00
		A1 Ni		
		A2 : Zn		
		A3 Cr		
		A4 Pb		
bjec	tive Question			
6	86	Ozone hole is caused by	4.0	1.00
		A1 DDT		
		A2 PET :		
		A3 CDC		
		A4 CFC		
	tive Question			
7	87	Which among the following is most expected in 'acid rain'?	4.0	1.00
		$^{A1}_{\cdot}$ H ₂ SO ₄		
		. 112004		
		A2		
		A2 HF		

		A4 Benzoic acid		
		Benzoic acid		
	ve Question			
8	88	The presence of pesticides in drinking water and colas was brought to public attention by	4.0	1.00
		A1 Sunita Narayan :		
		A2 Amartya Sen :		
		A3 Sir Vidyadhar Naipaul		
		A4 Yandana Shiva		
bjecti	ve Question			
	89	Energy flow in ecosystem is	4.0	1.00
		A1 Unidirectional		
		A2 Bidirectional		
		A3 : Multidirectional		
		A4 None of these		
	ve Question 90	An association between two individuals or populations whereboth are benefitted and where neither can survive without the otheris	4.0	1.00
		A1 competition		
		A2 commensalism		
		A3 mutualism		
		A4 protocoperation		
bjecti	ve Question			
	91	Red data book contains data of	4.0	1.00
		A1 all plant species :		
		A2 all animal species		

A3 economically important species :

A4 : threatened species

Objecti	ive Question			
92	92	Biodiversity	4.0	1.00
		 A1 increases towards the equator A2 decreases towards the equator A3 remains same throughout the planet A4 has no effect on change in latitude 		

Objective Question

93	93	What is the animal symbol of W. W. F (World Wildlife Fund)?	4.0	1.00
		A1 Red Panda :		
		A2 : Giant Panda		
		A3 Tiger		
		A4 : Kangaroo		

94	94	The source of energy in an ecosystem is	4.0	1.00
		Al ATP		
		A2 Sunlight		
		A3 D.N.A		
		A4 R.N.A		
Objec	tive Question			
95	95	Noise is measured using sound meter and the unit is	4.0	1.00
		Al hertz		

		A2 decibel :		
		A3 joule		
		A4 : sound		
	tive Question			
96	96	The occurrence of pesticides like DDT in higher trophic levels istermed as	4.0	1.00
		A1 bioremediation		
		A2 : biomagnification		
		A3 : biological enhancement		
		A4 : biopollution		
Object 97	tive Question 97		4.0	1.00
97	97	Which is not a primary pollutant	4.0	1.00
		A1 : Ammonia		
		A2 Peroxy Acyl Nitrate		
		A3 sulphur dioxide		
		A4 : hydrogen sulphide		
	tive Question			
98	98	Which of the following is a secondary pollutant	4.0	1.00
		A1 CO ₂		
		^{A2} co		
		A3 O3		
		^{A4} so ₂		
Ohiect	tive Question			
99	99	Carbon mono oxide is a pollutant because it	4.0	1.00
		A1 it reacts with O ₂		

		 A2 it inhibits glycolysis A3 makes nervous system inactive A4 reacts with haemoglobin 		
Objec 100	tive Question	The major pollutant from automoblie exhaust is	4.0	1.00
		A1 NO : A2 CO		
		A3 SO ₂		
		A4 H ₂ S		